
31VerificationHorizonsBlog.com

It’s pretty typical to think about writing tests for a 
specific design. However, as the number of SoCs and 
SoC variants that a verification team is responsible 
for grows, creating tests that are specific to the 
design is becoming impractical. There has been 
a fair amount of innovation in this space recently. 
Some organizations are using design-configuration 
details to customize parameterized tests suites. 
Some have even gone as far as generating both the 
design and the test suite from the same description.

The emerging Accellera Portable Stimulus Standard 
(PSS) provides features that enable test writers to 
maintain a strong separation between test intent 
(the high-level rules bounding the test scenario to 
produce) and the design-specific tests that are run 
against a specific design. This article shows how 
Accellera PSS can be used to develop generic test 
intent for generating memory traffic in an SoC, and 
how that generic test intent is targeted to a specific 
design.

SoCs have complex memory subsystems with 
cache coherent interconnects for cores and 
accelerators, multiple levels of interconnects and 
bridges, and many initiators and targets – often with 
limited accessibility. While it’s certainly important 
to verify connectivity between all initiators and 
targets, it is much more important to generate 
traffic between the various initiators and targets to 
validate performance. The goal here is to stress the 
interconnect bandwidth by generating multi-hop 
traffic and parallel transfers. 

There are, of course, multiple approaches to 
generating traffic across an SoC memory subsystem. 
SystemVerilog constrained-random tests can be 
used, as could manually-coded directed tests. While 
both of these approaches are tried and tested, both 
also have drawbacks. Constrained-random tests 
are generally limited to simulation and (maybe) 
emulation, but we often want to run these traffic 
tests across all the engines – simulation, emulation, 
and prototype. Directed tests, while portable, 
are incredibly laborious to create, and often miss 
critical corner cases. A bigger challenge to both 
approaches, though, is the impact that a design 
change has on the test suite. Because test intent 
(what to test) is so enmeshed with the test realization 
(how to implement the test behavior), a change to 
the design often results in the need to manually 
review hundreds (or more) tests to identify needed 
updates to account for the new things that need to 
be tested in the design variant, and the things that 
are currently being tested that no longer exist in the 
new design variant.

If we take a step back from our memory subsystem 
traffic-generation problem, our test intent is actually 
quite simple: generate traffic between available 
initiators and available targets. Accellera PSS 
allows us to generalize a surprising amount of our 

Getting Generic with Test Intent:  
Separating Test Intent from Design Details  
with Portable Stimulus 
by Matthew Ballance—Mentor, A Siemens Business

Figure 1: Example Multi-Core SoC



32 mentor.com

overall test intent and test scenarios without knowing 
anything about the specific resources present in the 
design. Accellera PSS also allows design details to be 
specified such that they are quite separate from the 
generic test intent and scenarios, making these easily 
reusable.

GENERIC TEST INTENT 
INFRASTRUCTURE 
As previously stated, memory-subsystem traffic 
generation involves using initiators to transfer data 
from memory to memory. We start capturing generic 
test intent by characterizing a transfer. Specifically, 
where the data is stored and what initiator is 
performing the transfer.

Figure 2 shows the Accellera PSS description of a 
memory transfer and related types. A buffer in PSS 
is a data type that specifies that its producer must 
complete execution before its consumer can execute. 
The data_xfer_b type shown above captures the 
region in which the data is stored, the address and 
size of the data, what initiator transferred the data, 
and how many “hops” the data took in getting to its 
current location. 

Note that empty enumerated types have been 
defined to capture the initiator moving the data 
(data_mover_e) and the memory region where 
the data is stored (mem_region_e). The specific 
enumerators that compose these types will be 
specified by the system configuration. 

GENERIC TEST INTENT PRIMITIVES
Accellera PSS uses the action construct to specify 
the high-level test intent behavior. The component 
construct is used to collect resources and the actions 
that use those resources. 

Figure 3 shows the PSS description for a generic 
component action that transfers data. Note that the 
move_data_a action is abstract, which means that 
it cannot be used on its own (it’s far too generic). 
However, this generic outline will be used as the basis 
for design-specific actions that represent the actual 
initiators in the system.

The move_data_a action has an input and an output 
of type data_xfer_b. This specifies that some action 
must run before an action that inherits from move_
data_a, and that this action produces a data transfer 
descriptor that can be used by another action. Figure 
4 shows a diagram of the move_data_a action with its 
input and output buffers.

Figure 2: Generic Description of a Transfer

Figure 3: Generic Data Mover Action

Figure 4: Generic Data Mover Action Diagram



33VerificationHorizonsBlog.com

It’s also helpful (and generic) to provide generic 
actions that produce an initialized data-transfer 
descriptor and one that accepts and terminates a 
series of transfers. Basic versions of these can be 
provided (as shown in Figure 5 above), and more 
environment-specific versions provided for specific 
designs.

GENERIC TEST INTENT 
With just the infrastructure and primitives we’ve 
defined thus far, we can already get started 
specifying test intent. Our first test scenario is 
shown in Figure 6 below. 

We’ve created a top-level action (mem2mem_
point2point_a) that instantiates the data_src_a 
and data_sink_a actions, and traverses them in an 
activity block with the stipulation that one action 
come between (num_hops==1). 

Figure 7 (below) shows a graphical 
representation of our point-to-point 
scenario. Note that, while we have 
required an action to exist between 
src and sink, we haven’t specified what 
it is – just that it must accept an input 
data buffer and produce an output data 
buffer. Likewise, our coverage goals are 
specified in terms of the set of target 
memory regions and initiators, despite 
the fact that we don’t know which 
initiators and targets our design will 
eventually contain.

This ability of a PSS description to capture generic 
test intent is one thing that makes it such a powerful 
way to specify test scenarios.

CAPTURING SYSTEM SPECIFICS 
Of course, we do have to capture the specifics 
of our actual design before we can generate 
interesting and legal tests. Our example system 
contains:

• Two processor cores
• One DMA engine with 32 channels
• Two accelerators with private memory
• A DDR controller
• An internal RAM and ROM 

We need to provide actions to describe the 
behavior of the initiators in our system that  
we want to test. 

Figure 6: Point-to-point Scenario

Figure 5: Data Initialization and Sink Action

Figure 7: Graphical Representation  
of Point-to-point



34 mentor.com

Figure 8 shows a PSS component and action that 
represents one of the processors in our system. PSS 
groups actions and the resources they require inside 
a component. In this case, we have a resource type to 
represent the CPU being used (cpu_r), and a pool of 
that resource type (core) to ensure that only one CPU 
operation can occur at one time.

Note that our cpu_c component inherits from the 
data_mover_c component, and the memcpy_a action 
inherits from the data_mover_a action.  

As a consequence, it will have the same data buffer 
input and output that the data_mover_a action has. 

Figure 9 below shows a description of the DMA 
component. Just like with our CPU component, 
we use a resource to describe how many parallel 
operations can run on an instance of the DMA 
component. Because we have 32 DMA channels, we 
create a pool of 32 dma_channel_r resources. 

CAPTURING SYSTEM RESOURCES 
Thus far, we have captured information about blocks 
within the design. These components and actions 
may well have been created by the teams responsible 
for verifying the IP, and reused at SoC level. Now, 
though, we need to capture the complete view of the 
resources and actions available in our SoC.

Figure 10 shows a top-level component with a 
component instance to capture each available 
resource in the design. We have two instances of the 
cpu_c component to represent the two processors, 
an instance of the dma_c component to represent the 
DMA engine, and component instances to represent 
the accelerators. 

CAPTURING SYSTEM- 
LEVEL CONSTRAINTS 
Now that we’ve captured the available resources,  
we need to capture the system-level constraints. 

Figure 11 (above right) shows the system-level 
constraints. Note that we use type extension 
(the extend statement) to layer our system-level 
constraints into the existing enumerated types and 
base action. Like many powerful programming 
constructs, type extension is very useful when used 

Figure 8: CPU Component and Action

Figure 10: Mem Subsystem Resources

Figure 9: DMA Component



35VerificationHorizonsBlog.com

judiciously, though overuse can easily lead  
to spaghetti code.

In addition to capturing the available memory regions 
(MEM_codec, MEM_crypto, etc), we also capture 
restrictions on which initiators can access which 
targets. Note that we’ve captured the restriction that 
only accelerators can access their local memories by 
stating that if either the source of destination memory 
is the accelerator-local memories, then the initiator 
must be the corresponding accelerator.

So, all in all, a fairly simple process to capture system 
capabilities and constraints.

BRINGING TEST INTENT AND 
SYSTEM SPECIFICS TOGETHER 
Now that we have both generic test intent and system 
specifics available, we can bring them together and 
start generating specific tests.

Figure 12 shows how we can customize our generic 
test intent (mem2mem_test_c) with the capabilities 
of our specific system. Our specific test component 
extends from the generic test scenario we previously 

described. By instantiating the mem_subsystem_c 
component and connecting all the actions to the 
same pool of buffers, we make our system-specific 
actions and resources available to our generic test 
scenario.

Figure 13 shows a few specific scenarios that could 
result from our point-to-point scenario combined with 
our system description. One important thing about a 
portable stimulus description is that it is declarative 
and statically analyzable. This means that we can use 
analysis tools to discover exactly how many legal 
solutions there are to our point-to-point scenario in 
the presence of the available system resources. In 
our cases, there are a total of 72 legal point-to-point 
scenarios.

Figure 13: Example Specific Scenarios

Figure 12: System-Targeted Test Intent

Figure 11: System-Level Constraints



36 mentor.com

EXTENDING THE SCENARIO
We can easily expand our set of tests by using the 
system resource and constraint description we 
already have, and just altering our original test 
scenario a bit.

For example, we can alter the number of ‘hops’ our 
data takes moving from source to sink, as shown in 
Figure 14. If we increase the number of transfers to 2, 
there are 864 possible test scenarios. Expanding the 
number of hops to 4 results in an incredible 124,416 
legal test scenarios. Not bad for just a few extra lines 
of PSS description!

We can just as easily extend the scenario to account 
for parallel transfers. In this case, we reuse our two-
hop scenario and run two instances in parallel  
(Figure 15). 

The resulting transfers will be parallel back-to-back 
transfers, an example of which is shown in Figure 16. 
Because we’ve captured the available resources and 
their restrictions, our PSS processing tool will ensure 
that only legal sets of parallel transfers are generated.

  
CHANGING THE DESIGN 
Updating a test suite when the SoC changes, or trying 
to reuse a test suite for an existing SoC on a variant, is 
laborious and challenging. Just for a start, the set of 
available resources is different and the memory map 
is different. 

The process is entirely different with a PSS-based 
test suite. Let’s assume we have an SoC variant that 
doesn’t have a codec, but does have an additional 
local RAM (Figure 17).

Figure 14: Expanding Test Scenario

Figure 15: Generating Parallel Transfers

Figure 16: Example Back-to-Back Parallel Transfers

Figure 17: SoC Variant



37VerificationHorizonsBlog.com

 
The only change we need to make is to our 
description of the system resources. In this case, 
we need to remove the codec component instance 
and add another RAM to the memory_region_e 
enumeration, as shown in Figure 18 above. 

With only these minor changes, a PSS processing tool 
can re-generate specific tests from our high-level 
test intent that match the new system. In this case, 
making these design changes expands the number 
of transfers described by our original point-to-point 
transfer test from 72 to 128.

SUMMARY 
As we’ve seen from this simple example, the 
capabilities of Accellera PSS go far beyond the 
simple ability to target the same test intent to various 
verification platforms. PSS allows us to dramatically 
raise the abstraction level at which test intent is 
described, allowing us to easily capture generic 
test intent and test scenarios independent of the 
design details. Modeling available design resources 
and constraints and using these to shape test intent 
is straightforward. Finally, PSS test intent easily 
adapts to design changes, preserving the effort 
invested in capturing test intent. Combined, all of 
these capabilities dramatically boost verification 
productivity!

Figure 18: System Description Changes



VERIFICATION 
ACADEMY

The Most Comprehensive Resource for Verification Training

32 Video Courses Available Covering

• UVM Debug
• Portable Stimulus Basics
• SystemVerilog OOP
• Formal Verification
• Intelligent Testbench Automation
• Metrics in SoC Verification
• Verification Planning
• Introductory, Basic, and Advanced UVM
• Assertion-Based Verification
• FPGA Verification
• Testbench Acceleration
• PowerAware Verification
• Analog Mixed-Signal Verification

UVM and Coverage Online Methodology Cookbooks

Discussion Forum with more than 8250 topics

Verification Patterns Library

www.verificationacademy.com

32 Video Courses Available Covering

• UVM Debug
• Portable Stimulus Basics
• SystemVerilog OOP
• Formal Verification
• Intelligent Testbench Automation
• Metrics in SoC Verification
• Verification Planning
• Introductory, Basic, and Advanced UVM
• Assertion-Based Verification
• FPGA Verification
• Testbench Acceleration
• PowerAware Verification
• Analog Mixed-Signal Verification

UVM and Coverage Online Methodology Cookbooks

Discussion Forum with more than 8250 topics

Verification Patterns Library 

www.verificationacademy.com



Editor:  
Tom Fitzpatrick

Program Manager:  
Rebecca Granquist

Mentor, A Siemens Business  
Worldwide Headquarters 

8005 SW Boeckman Rd. 
Wilsonville, OR  97070-7777

Phone:  503-685-7000

To subscribe visit:  
www.mentor.com/horizons

To view our blog visit: 
VERIFICATIONHORIZONSBLOG.COM

Verification Horizons is a publication  
of Mentor, A Siemens Business 

©2017, All rights reserved.




