
4 mentor.com

INTRODUCTION
If you work in functional verification, you’ve likely
become quite familiar with random constraints
from functional verification languages such as
SystemVerilog. Using a constraint solver to automate
stimulus generation is key to quickly generating lots
of stimulus that hits cases that weren’t envisioned
by the test writer. When using constrained-random
generation, constraints are the mechanism by which
we customize what is legal and interesting in the
stimulus space.

Accellera’s Portable Stimulus Standard (PSS)
introduces some new constraint capabilities, in
addition to supporting the capabilities that we’ve
become familiar with in SystemVerilog. This article
provides a guided tour of one of these new constraint
features, along with examples that highlight their
benefits.

CONSTRAINT FUNDAMENTALS
If you’ve used SystemVerilog, you’re likely very familiar
with the constraint construct; random constraints
declared within a class along with random fields.
When an instance of the class is randomized, the
constraints limit the available range of values.

Let’s say we are generating IPV4 traffic, and have a
data structure that represents an IPV4 header. Figure
1 shows a SystemVerilog class and the corresponding
PSS struct that we might use to represent this
collection of random data.

 Note that we also have a very basic constraint on the
length field, since the total length of all packets must
be at least 20 bytes. Also note just how similar the
SystemVerilog and the PSS description of this IPV4
header is. So, if you can write SystemVerilog data
structures and constraints, you can just as easily write
PSS descriptions of data structures and constraints.

CUSTOMIZING RANDOMIZATION
In both SystemVerilog and PSS, we can customize
pure-data randomization in a couple of ways. The
simplest way, of course, is to add more constraints.
We can add more constraints by declaring a new data
structure that inherits from the base data structure
and adds more constraints, as shown in Figure 2.

Here again, both the constructs and syntax are
remarkably similar between SystemVerilog and
Accellera PSS.

Constraints can also be added ‘in-
line’ when an instance of a data
structure is randomized. When
using a methodology such as UVM
in SystemVerilog, randomization is
likely to occur in a UVM sequence
with the data structure instance
subsequently being sent to the rest
of the testbench. In a PSS model,
actions roughly play the same role as
a sequence, both selecting values for
data structure fields and specifying
what behavior in the environment
should be performed.

In both cases, additional constraints
can be added in-line with the call to

Make Your Constraints More Dynamic
with Portable Stimulus
by Matthew Ballance — Mentor, A Siemens Business

Figure 1: IPV4 Header in SystemVerilog and PSS

5VerificationHorizonsBlog.com

randomize values of the data structure fields.
Figure 3 shows a UVM sequence and a PSS action
that create a series of small IPV4 headers by adding
an in-line constraint.

While in-line constraints are very handy, the fact
that we’ve hard-coded values and relationships
directly within the constraint blocks makes our
SystemVerilog and PSS descriptions more brittle.
What if my definition of a small header changes
one day? I’ll need to find any place in my testbench
where I’ve added a constraint like this and update it.
What if I want to constrain another field temporarily
any time a small packet is being created? Here
again, I would need to make updates across my
entire test description.

WHAT ARE DYNAMIC
CONSTRAINTS?
PSS adds a new construct called a dynamic
constraint that is remarkably helpful in addressing
the limitations of hard-coded inline constraints.
The data structure-level constraints that we’ve
looked at thus far in both SystemVerilog and PSS
are considered static. Specifically, once a constraint
is declared in a class or struct it is applied every

time an instance
of the class is
randomized.
Accellera PSS
supports static
constraints
inside struct and
action types, but
also introduces
a new type
of constraint:
a dynamic
constraint.
A dynamic
constraint is
almost exactly
the mirror
image of a static
constraint. While
a static constraint
always applies,
a dynamic
constraint only

applies once the user activates it. Initially, this might
seem like a fairly useless construct. It’s anything but!

In PSS, I might declare my IPV4 header struct
anticipating that I would want to create some
specific specializations of the struct. Figure 4
shows two dynamic constraints I might apply to
enable creation of small headers and large headers.

Figure 2: Small IPV4 Header Data Structure

Figure 3: Adding In-Line Constraints

Figure 4: PSS IPV4 Header Struct
with Dynamic Constraints

6 mentor.com

Note that these two constraints conflict. However,
because dynamic constraints don’t apply until the
user activates them, that doesn’t create any problems.

We can use a dynamic constraint like any other
constraint expression, including inside an inline
constraint. Figure 5 shows an updated version of my
create_small_ipv4_headers action that uses the new
dynamic constraint.

Simply by replacing a literal constraint (length <=
128) with a symbolic one (small_header_c) the code
already conveys more of the author’s intent. This
description is also less brittle. If we decide that a small
header needs to be defined differently, we can simply
update the original dynamic constraint definition, and
all uses of that constraint will automatically use the
new definition.

As you can start to see, dynamic constraints allow a
constraint API to be developed such that test writers
can symbolically constrain objects instead of directly
referring to fields and constant values.

COMPOSING
DYNAMIC CONSTRAINTS
Dynamic constraints provide value beyond just
making code easier to understand and easier to
update. Dynamic constraints are boolean constraints,
which means we can use them in a conditional
constraint. The value of a dynamic constraint is ‘true’ if
it is applied and ‘false’ if not. This property of dynamic
constraints allows us to compose more-interesting
relationships.

What if we wanted to generate a series of headers
that were either large or small? Using the knowledge
that dynamic constraints are boolean constraints, we
can state our intent quite simply, as shown in Figure 6.

The use of dynamic constraints isn’t limited to inline
constraint blocks. We also can use them inside the
data structures along static constraints to encapsulate
common constraints and make our constraints more
modular and easier to understand.

Figure 5: Inline Randomization
with a Dynamic Constraint

Figure 6: Composing Inline Constraints
with Dynamic Constraints

Figure 7: Using Dynamic Constraints
Inside Static Constraints

7VerificationHorizonsBlog.com

Figure 7 shows an example of using dynamic
constraints inside static constraints. For the
purposes of this example, we have decided that,
for our application, packets with immediate priority
(DSCP level of CS1) must be less-equal to 256 bytes
in size. Using dynamic constraints to associate a
meaningful name with the constraint expression
makes our code easier to read and maintain, just as
it did in the case of inline constraints.

USING VIRTUAL
DYNAMIC CONSTRAINTS
Dynamic constraints, just like static constraints, are
virtual. This means that we can change the meaning
of a dynamic constraint (and, thus, the generated
stimulus) using inheritance and factory-style type
overrides.

What if we wanted to run a set of tests in which
the definition of a small header is different from
the default definition? Clearly it’s undesirable to
actually modify the test scenarios themselves.
Using dynamic constraints, and the fact that they
are virtual, allows us to define a new struct where
the definition of a small header is different, as
shown in Figure 8.

We create a new header struct that inherits from
the existing ipv4_header struct and create a new
definition of the small_header_c constraint. Just as
with a static constraint, this version of the constraint
will be used for all instances of the ipv4_
header_larger_small_headers struct. But,
how do we cause this struct to be used
instead of the ipv4_header struct that is
used in our test scenario (Figure 9).

Accellera PSS provides us with a very
useful notion of ‘override’, which is
effectively a UVM Factory built into

the language. Just like the UVM Factory, the PSS
override construct provides a way to replace
instances of a given type with another derived type.
The PSS type extension construct provides an easy
way to inject these overrides without modifying the
original scenario.

Figure 10 shows how type extension and the
override construct are combined to cause the
ipv4_header_larger_small_headers to be used by
our create_small_ipv4_headers scenarios. This will

cause our scenario to use the new definition
of a small header without us needing to
modify any code.

USING DYNAMIC
CONSTRAINTS
WITH ACTIVITIES
Thus far, we’ve focused on applications
for dynamic constraints that are fairly
data-centric and restricted to a single data

structure. These capabilities of dynamic constraints
only increase when applied in the context of a PSS
activity. If you’ve attended or watched one of the

Figure 8: Overriding a Dynamic Constraint

Figure 10 : Injecting an Override Statement

Figure 9: Small Headers Scenario

8 mentor.com

Accellera PSS tutorials, you’ve learned a bit about
Activities. An activity is a declaratively-defined
behavior that can be statically analyzed. An activity
is closer to a set of random variables and constraints
than it is to imperative code in SystemVerilog.
Dynamic constraints effectively enable functional
programming within an activity.

In SystemVerilog, we can only pass values between
calls to randomize. For example, without a UVM
sequence we could select a header size to be small,
medium, or large, then constrain the packet size to
this pre-selected size. However, the only way to pass
forward the notion that a future header should be
‘small’ independent of a specific value is to add more
variables to encode that intent. Dynamic constraints
provide exactly this capability in Accellera PSS.

Figure 11 shows the use of dynamic constraints in an
activity. In this case, the select statement chooses
between sending four small-header packets and
sending four large-header packets. Then, two
normally-constrained headers are sent. We use
dynamic constraints to easily control these two final
headers based on the select branch taken. If we
select the branch that sends the four small headers,
we cause h1 to be sent with priority CS1 and cause h2
to be sent with priority CS2.

CONCLUSION
As you’ve hopefully seen from the preceding
article, dynamic constraints provide significant new
capabilities above and beyond those provided by the
constraints that we’ve become familiar with. Dynamic
constraints are present in all versions of the Accellera
Portable Stimulus Standard, and are supported by
Mentor’s Questa® inFact portable stimulus tool.

Dynamic constraints are yet another example of how
Accellera’s Portable Stimulus Standard is enabling
greater abstraction and productivity in capturing test
intent, in addition to enabling that test intent to easily
be made portable across a variety of target platforms.
If you’re interested in contributing to the evolution
of features for productively capturing test intent, I’d
encourage you to get involved with the Accellera
Portable Stimulus Working Group!

Figure 11: Using Dynamic Constraints
in an Activity

VERIFICATION
ACADEMY

The Most Comprehensive Resource for Verification Training

31 Video Courses Available Covering

• UVM Debug
• Portable Stimulus Basics
• SystemVerilog OOP
• Formal Verification
• Metrics in SoC Verification
• Verification Planning
• Introductory, Basic, and Advanced UVM
• Assertion-Based Verification
• FPGA Verification
• Testbench Acceleration
• PowerAware Verification
• Analog Mixed-Signal Verification

UVM and Coverage Online Methodology Cookbooks

Discussion Forum with more than 8250 topics

Verification Patterns Library

www.verificationacademy.com

31 Video Courses Available Covering

• UVM Debug
• Portable Stimulus Basics
• SystemVerilog OOP
• Formal Verification
• Metrics in SoC Verification
• Verification Planning
• Introductory, Basic, and Advanced UVM
• Assertion-Based Verification
• FPGA Verification
• Testbench Acceleration
• PowerAware Verification
• Analog Mixed-Signal Verification

UVM and Coverage Online Methodology Cookbooks

Discussion Forum with more than 8250 topics

Verification Patterns Library

www.verificationacademy.com

Editor:
Tom Fitzpatrick

Program Manager:
Rebecca Granquist

Mentor, A Siemens Business
Worldwide Headquarters

8005 SW Boeckman Rd.
Wilsonville, OR 97070-7777

Phone: 503-685-7000

To subscribe visit:
www.mentor.com/horizons

To view our blog visit:
VERIFICATIONHORIZONSBLOG.COM

Verification Horizons is a publication
of Mentor, A Siemens Business

©2018, All rights reserved.

