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INTRODUCTION 
If you work in functional verification, you’ve likely 
become quite familiar with random constraints 
from functional verification languages such as 
SystemVerilog. Using a constraint solver to automate 
stimulus generation is key to quickly generating lots 
of stimulus that hits cases that weren’t envisioned 
by the test writer. When using constrained-random 
generation, constraints are the mechanism by which 
we customize what is legal and interesting in the 
stimulus space. 

Accellera’s Portable Stimulus Standard (PSS) 
introduces some new constraint capabilities, in 
addition to supporting the capabilities that we’ve 
become familiar with in SystemVerilog. This article 
provides a guided tour of one of these new constraint 
features, along with examples that highlight their 
benefits.
 
CONSTRAINT FUNDAMENTALS 
If you’ve used SystemVerilog, you’re likely very familiar 
with the constraint construct; random constraints 
declared within a class along with random fields. 
When an instance of the class is randomized, the 
constraints limit the available range of values.

Let’s say we are generating IPV4 traffic, and have a 
data structure that represents an IPV4 header. Figure 
1 shows a SystemVerilog class and the corresponding 
PSS struct that we might use to represent this 
collection of random data. 

 Note that we also have a very basic constraint on the 
length field, since the total length of all packets must 
be at least 20 bytes. Also note just how similar the 
SystemVerilog and the PSS description of this IPV4 
header is. So, if you can write SystemVerilog data 
structures and constraints, you can just as easily write 
PSS descriptions of data structures and constraints.
 
CUSTOMIZING RANDOMIZATION 
In both SystemVerilog and PSS, we can customize 
pure-data randomization in a couple of ways. The 
simplest way, of course, is to add more constraints. 
We can add more constraints by declaring a new data 
structure that inherits from the base data structure 
and adds more constraints, as shown in Figure 2.

Here again, both the constructs and syntax are 
remarkably similar between SystemVerilog and 
Accellera PSS.

Constraints can also be added ‘in-
line’ when an instance of a data 
structure is randomized. When 
using a methodology such as UVM 
in SystemVerilog, randomization is 
likely to occur in a UVM sequence 
with the data structure instance 
subsequently being sent to the rest 
of the testbench. In a PSS model, 
actions roughly play the same role as 
a sequence, both selecting values for 
data structure fields and specifying 
what behavior in the environment 
should be performed.

In both cases, additional constraints 
can be added in-line with the call to  
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Figure 1: IPV4 Header in SystemVerilog and PSS
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randomize values of the data structure fields.  
Figure 3 shows a UVM sequence and a PSS action 
that create a series of small IPV4 headers by adding 
an in-line constraint.

While in-line constraints are very handy, the fact 
that we’ve hard-coded values and relationships 
directly within the constraint blocks makes our 
SystemVerilog and PSS descriptions more brittle. 
What if my definition of a small header changes 
one day? I’ll need to find any place in my testbench 
where I’ve added a constraint like this and update it. 
What if I want to constrain another field temporarily 
any time a small packet is being created? Here 
again, I would need to make updates across my 
entire test description. 
 
WHAT ARE DYNAMIC 
CONSTRAINTS? 
PSS adds a new construct called a dynamic 
constraint that is remarkably helpful in addressing 
the limitations of hard-coded inline constraints. 
The data structure-level constraints that we’ve 
looked at thus far in both SystemVerilog and PSS 
are considered static. Specifically, once a constraint 
is declared in a class or struct it is applied every 

time an instance 
of the class is 
randomized. 
Accellera PSS 
supports static 
constraints 
inside struct and 
action types, but 
also introduces 
a new type 
of constraint: 
a dynamic 
constraint. 
A dynamic 
constraint is 
almost exactly 
the mirror 
image of a static 
constraint. While 
a static constraint 
always applies, 
a dynamic 
constraint only 

applies once the user activates it. Initially, this might 
seem like a fairly useless construct. It’s anything but! 

In PSS, I might declare my IPV4 header struct 
anticipating that I would want to create some 
specific specializations of the struct. Figure 4  
shows two dynamic constraints I might apply to 
enable creation of small headers and large headers.  

Figure 2: Small IPV4 Header Data Structure

Figure 3: Adding In-Line Constraints

Figure 4: PSS IPV4 Header Struct  
with Dynamic Constraints
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Note that these two constraints conflict. However, 
because dynamic constraints don’t apply until the 
user activates them, that doesn’t create any problems.

We can use a dynamic constraint like any other 
constraint expression, including inside an inline 
constraint. Figure 5 shows an updated version of my 
create_small_ipv4_headers action that uses the new 
dynamic constraint.

Simply by replacing a literal constraint (length <= 
128) with a symbolic one (small_header_c) the code 
already conveys more of the author’s intent. This 
description is also less brittle. If we decide that a small 
header needs to be defined differently, we can simply 
update the original dynamic constraint definition, and 
all uses of that constraint will automatically use the 
new definition.

As you can start to see, dynamic constraints allow a 
constraint API to be developed such that test writers 
can symbolically constrain objects instead of directly 
referring to fields and constant values. 
 
COMPOSING  
DYNAMIC CONSTRAINTS 
Dynamic constraints provide value beyond just 
making code easier to understand and easier to 
update. Dynamic constraints are boolean constraints, 
which means we can use them in a conditional 
constraint. The value of a dynamic constraint is ‘true’ if 
it is applied and ‘false’ if not. This property of dynamic 
constraints allows us to compose more-interesting 
relationships.

What if we wanted to generate a series of headers 
that were either large or small? Using the knowledge 
that dynamic constraints are boolean constraints, we 
can state our intent quite simply, as shown in Figure 6.

The use of dynamic constraints isn’t limited to inline 
constraint blocks. We also can use them inside the 
data structures along static constraints to encapsulate 
common constraints and make our constraints more 
modular and easier to understand. 

Figure 5: Inline Randomization  
with a Dynamic Constraint

Figure 6: Composing Inline Constraints  
with Dynamic Constraints

Figure 7: Using Dynamic Constraints  
Inside Static Constraints
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Figure 7 shows an example of using dynamic 
constraints inside static constraints. For the 
purposes of this example, we have decided that, 
for our application, packets with immediate priority 
(DSCP level of CS1) must be less-equal to 256 bytes 
in size. Using dynamic constraints to associate a 
meaningful name with the constraint expression 
makes our code easier to read and maintain, just as 
it did in the case of inline constraints.
 
USING VIRTUAL  
DYNAMIC CONSTRAINTS 
Dynamic constraints, just like static constraints, are 
virtual. This means that we can change the meaning 
of a dynamic constraint (and, thus, the generated 
stimulus) using inheritance and factory-style type 
overrides.

What if we wanted to run a set of tests in which  
the definition of a small header is different from  
the default definition? Clearly it’s undesirable to 
actually modify the test scenarios themselves.  
Using dynamic constraints, and the fact that they  
are virtual, allows us to define a new struct where 
the definition of a small header is different, as 
shown in Figure 8.

We create a new header struct that inherits from 
the existing ipv4_header struct and create a new 
definition of the small_header_c constraint. Just as 
with a static constraint, this version of the constraint 
will be used for all instances of the ipv4_
header_larger_small_headers struct. But, 
how do we cause this struct to be used 
instead of the ipv4_header struct that is 
used in our test scenario (Figure 9).

Accellera PSS provides us with a very 
useful notion of ‘override’, which is 
effectively a UVM Factory built into 

the language. Just like the UVM Factory, the PSS 
override construct provides a way to replace 
instances of a given type with another derived type. 
The PSS type extension construct provides an easy 
way to inject these overrides without modifying the 
original scenario.

Figure 10 shows how type extension and the 
override construct are combined to cause the 
ipv4_header_larger_small_headers to be used by 
our create_small_ipv4_headers scenarios. This will 

cause our scenario to use the new definition 
of a small header without us needing to 
modify any code.
 
USING DYNAMIC 
CONSTRAINTS  
WITH ACTIVITIES 
Thus far, we’ve focused on applications  
for dynamic constraints that are fairly  
data-centric and restricted to a single data 

structure. These capabilities of dynamic constraints 
only increase when applied in the context of a PSS 
activity. If you’ve attended or watched one of the 

Figure 8: Overriding a Dynamic Constraint

Figure 10 : Injecting an Override Statement

Figure 9: Small Headers Scenario
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Accellera PSS tutorials, you’ve learned a bit about 
Activities. An activity is a declaratively-defined 
behavior that can be statically analyzed. An activity 
is closer to a set of random variables and constraints 
than it is to imperative code in SystemVerilog. 
Dynamic constraints effectively enable functional 
programming within an activity. 

In SystemVerilog, we can only pass values between 
calls to randomize. For example, without a UVM 
sequence we could select a header size to be small, 
medium, or large, then constrain the packet size to 
this pre-selected size. However, the only way to pass 
forward the notion that a future header should be 
‘small’ independent of a specific value is to add more 
variables to encode that intent. Dynamic constraints 
provide exactly this capability in Accellera PSS. 

Figure 11 shows the use of dynamic constraints in an 
activity. In this case, the select statement chooses 
between sending four small-header packets and 
sending four large-header packets. Then, two 
normally-constrained headers are sent. We use 
dynamic constraints to easily control these two final 
headers based on the select branch taken. If we 
select the branch that sends the four small headers, 
we cause h1 to be sent with priority CS1 and cause h2 
to be sent with priority CS2. 
 
CONCLUSION 
As you’ve hopefully seen from the preceding 
article, dynamic constraints provide significant new 
capabilities above and beyond those provided by the 
constraints that we’ve become familiar with.  Dynamic 
constraints are present in all versions of the Accellera 
Portable Stimulus Standard, and are supported by 
Mentor’s Questa® inFact portable stimulus tool.

Dynamic constraints are yet another example of how 
Accellera’s Portable Stimulus Standard is enabling 
greater abstraction and productivity in capturing test 
intent, in addition to enabling that test intent to easily 
be made portable across a variety of target platforms. 
If you’re interested in contributing to the evolution 
of features for productively capturing test intent, I’d 
encourage you to get involved with the Accellera 
Portable Stimulus Working Group!

Figure 11: Using Dynamic Constraints  
in an Activity
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